
12/30/22, 5:05 PM An Illustrated Guide to the Kaminsky DNS Vulnerability

unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html 1/14

Steve Friedl's Unixwiz.net Tech Tips
An Illustrated Guide to the Kaminsky DNS Vulnerability

Table of Contents

Terminology
Following a simple DNS query
What's in a DNS packet?

Resource Record Types
Drilling down to a real query
What's in the cache?

Poisoning the cache
Shenanigans, Version 1
Dan's Shenanigans

What's the fix?
Summary
Other References

The big security news of Summer 2008 has been Dan Kaminsky's discovery of a serious vulnerability in
DNS. This vulnerability could allow an attacker to redirect network clients to alternate servers of his own
choosing, presumably for ill ends.

This all led to a mad dash to patch DNS servers worldwide, and
though there have been many writeups of just how the
vulnerability manifests itself, we felt the need for one in far
more detail. Hence, one of our Illustrated Guides.

This paper covers how DNS works: first at a high level, then by
picking apart an individual packet exchange field by field. Next,
we'll use this knowledge to see how weaknesses in common
implementations can lead to cache poisoning.
By fully understanding the issues at play, the reader may be
better equipped to mitigate the risks in his or her own
environment.

We hope everybody who runs a DNS server patches soon.

Terminology
Before we see how DNS operates, we need to define a few terms to know who the players are, software-wise. This will be review
for many, and in some cases we leave out side details that an expert would find fault with. Omitted details won't matter for an
understanding of this issue.

zone

Think of this as a "domain": a collection of hostnames/IP pairs all managed together.

Our servers operate unixwiz.net, and all the DNS records that go with it — www.unixwiz.net, mvp.unixwiz.net,
cs.unixwiz.net, etc. — are all part of the unixwiz.net zone.

The subtle distinction comes with subdomains: sometimes they are part of the main zone, sometimes they are a separate
zone, but none of that matters for this paper.

Nameserver

This is server software that answers DNS questions, such as "What is the IP address for www.unixwiz.net?". Sometimes a
nameserver knows the answer directly (if it's "authoritative" for the zone), other times it has to go out to the internet and ask
around to find the answer (if it's a recursive nameserver).

There is wide variety of software that performs this service: BIND, PowerDNS, djbdns, and many others. They all answer the
same questions more or less the same way, though the minor differences matter some for this paper.

Authoritative Nameserver

For every zone, somebody has to maintain a file of the hostnames and IP address associations ("linux.unixwiz.net is
64.170.162.98", and so on). This is generally an administrative function performed by a human, and in most cases one
machine has this file. It's the zone master.

Zones with multiple public nameservers make administrative arrangements to transfer the zone data automatically to
additional slave nameservers, all of which are authoritative as far as the outside world is concerned. The distinction between
master and slave is unimportant for this paper.

Resolver

This is the client part of the DNS client/server system: it asks the questions about hostnames. The resolver is usually a
small library compiled into each program that requires DNS services, and it knows just enough to send questions to a nearby
nameserver.

On Linux/UNIX systems, the location of the servers-to-ask is found in the file /etc/resolv.conf, and on Windows it's part of
the Network Connections setup in the control panel. This usually consists of a list of IP addresses, each of which expects to
find a nameserver on the other end.

Resolvers are usually very small and dumb, relying on the servers to do the heavy lifting.

Recursive Nameserver

This is a nameserver that's willing to go out on the internet and find the results for zones it's not authoritative for, as a service
to its clients. Not all nameservers are configured to provide recursive service, or are limited to just trusted clients (say, an ISP
may provide nameservice only to its customers).

http://doxpara.com/
http://www.doxpara.com/
http://www.kb.cert.org/vuls/id/800113
http://www.isc.org/sw/bind/
http://www.powerdns.com/
http://cr.yp.to/djbdns.html

12/30/22, 5:05 PM An Illustrated Guide to the Kaminsky DNS Vulnerability

unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html 2/14

Resource Record

Though most think of DNS as providing hostname-to-IP mapping, there are actually other kinds of questions we can ask of a
nameserver, and this highlights the notion that DNS is really a database of "resource records".

The most common type is an IP Address (an "A" record), but other records exist too: NS (nameserver), MX (mail exchanger),
SOA (Start of Authority), and so on.

Delegation

When a nameserver doesn't have the contents of a zone, but knows how to find the owner, it's said to delegate service of
that zone to another nameserver. Informally, it's a pass-the-buck mechanism: "I know the zone you're asking about, go ask
(hostname) for the details".

Following a simple DNS query
With a few key terms defined, we'll review how a simple recursive query
works in the absence of any bugs or shenanigans; this forms the
background of where the exploits can later be applied.

Though the DNS packet itself has many fields (each of which is
important), we're omitting that detail for now in order to understand the
high level flow of a full query, from top to bottom. Visualizing how
delegation bounces requests from one server to another is vital to
understanding the vulnerability will be exploited later.
We can't really tell by looking at the query itself what prompted the query
in the first place. In the logo of this section, we see that the user
attempted to ping our webserver, and the ping program asked the nameserver to perform this name-to-IP lookup.

But it could have just as easily been a user entering http://www.unixwiz.net in a browser address bar. But it's not important to
know why the name's being looked up, only to know how it looks up.

1 The client (noted as "User's PC") makes a
request for www.unixwiz.net, and it's
routed to the nameserver provided by the
user's ISP. It requests the A record, which
represents an IP address.
The ISP's nameserver knows that it's not
authoritative for unixwiz.net, so it can't
look it up in its local zone database. It also
doesn't find the name it its cache of
recently-seen data, so it knows it has to go
out to the internet to find it for us.

2 All recursive nameservers are preconfigured
with a list of 13 root servers, a selection of
which looks like:

Root hints
A.ROOT-SERVERS.NET. IN A 198.41.0.4
B.ROOT-SERVERS.NET. IN A 192.228.79.201
C.ROOT-SERVERS.NET. IN A 192.33.4.12
...
M.ROOT-SERVERS.NET. IN A 202.12.27.33

Thankfully these IP addresses don't change
very often.

The nameserver picks one at random and
sends off the query for the A record of
www.unixwiz.net; here it's going to
b.root-servers.net

3 The root server doesn't know anything about
unixwiz.net, but is happy to send me the
way of the Global Top Level Domain (GTLD)
servers responsible for the .net domain.
This is in the form of NS records of servers
more qualified to answer our query: "Go ask
these guys - here's a list".

.NET referrals
/* Authority section */
NET. IN NS A.GTLD-SERVERS.NET.
 IN NS B.GTLD-SERVERS.NET.
 IN NS C.GTLD-SERVERS.NET.
 ...

12/30/22, 5:05 PM An Illustrated Guide to the Kaminsky DNS Vulnerability

unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html 3/14

 IN NS M.GTLD-SERVERS.NET.

/* Additional section - "glue" records */
A.GTLD-SERVERS.net. IN A 192.5.6.30
B.GTLD-SERVERS.net. IN A 192.33.14.30
C.GTLD-SERVERS.net. IN A 192.26.92.30
...
M.GTLD-SERVERS.net. IN A 192.55.83.30

Though technically we asked only for the NS
records, the root servers also give us the IP
address of each: this is known as "glue" and
is provided to save us from having to look it
up.

4 With the helpful referral from the root
servers, this nameserver chooses one of the
authoritative servers at random — here,
c.gtld-servers.net — and sends off the
same query: "I was told to ask you: what's
the A record for www.unixwiz.net?".

5 The GTLD server doesn't know the specific
answer to our query, but it does know how
to get us closer. Like the root servers, it
sends back a referral (a set of NS records)
that are likely to have what we seek.

unixwiz.net referral
/* Authority section */
unixwiz.net. IN NS cs.unixwiz.net.
 IN NS linux.unixwiz.net.

/* Additional section - "glue" records */
cs.unixwiz.net. IN A 8.7.25.94
linux.unixwiz.net. IN A 64.170.162.98

6 Once again the recursive nameserver is
following a chain of referrals on the client's
behalf, and it picks one of the nameservers

12/30/22, 5:05 PM An Illustrated Guide to the Kaminsky DNS Vulnerability

unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html 4/14

at random and sends off a third query (the
same as the other two).

7 Unlike the other answers, that merely
passed the buck onto other nameservers,
this one actually has what we were looking
for: it provides the A record for
www.unixwiz.net.
In addition, the response includes a flag
saying "This is an authoritative response",
indicating it came from the source of truth
for this domain.

8 Now with answer in hand, the ISP's
recursive nameserver hands that answer
back to the client, and that satisfies the
entire query.
The recursive nameserver also files away
this answer into its own cache in case this or
some other client makes the same query
later.

But we'll note that the reply to the client
doesn't include the "authoritative" indicator.
Even though it received one from
cs.unixwiz.net, the recursive nameserver
can't pretend to the client that it's actually
the source of authority, so it's considered a
non-authoritative answer.

This procedure goes on under the hood trillions of time every day over the internet. DNS is quite fast, so the eight-packet
handshake (for this particular query) routinely completes in just a split second.
This reveals the distributed nature of DNS: no one machine knows everything, but they do know how to find each other via
delegation.

As a side note, nothing prevents any nameserver from hosting any zone, including those it doesn't really own. A bad guy could set
up a nameserver and configure an authoritative zone for BankOfSteve.com, but it has no effect because no higher-level
nameserver ever delegates to it.

What's in a DNS packet?

12/30/22, 5:05 PM An Illustrated Guide to the Kaminsky DNS Vulnerability

unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html 5/14

With a grasp of the high-level exchanges we dig a bit deeper into what's inside a DNS packet: the details are required to
understand cache poisoning and this recent vulnerability. There's a lot of detail here, but fortunately many of the fields aren't
important for an understanding of these issues.

The illustration on the right shows the overall structure of a single packet of DNS data, and it can reflect a question packet or an
answer packet. We've highlighted some of the fields that are most related to this exploit.

Source / Destination IP address

These reflect the IP addresses of the machines that sent and
should receive the packet. It's possible to forge the source
address, but pointless to forge the destination.

Analog in the real world: on an envelope sent in the US Mail,
you can put anything you want as the return address — the
source address — but if you lie about the recipient, it's not
going to go where you want.

Source / Destination port numbers

DNS servers listen on port 53/udp for queries from the
outside world, so the first packet of any exchange always
includes 53 as the UDP destination port.

The source port varies considerably (though not enough, as
we'll find shortly): sometimes it's also port 53/udp,
sometimes it's a fixed port chosen at random by the
operating system, and sometimes it's just a random port that
changes every time.

As far as DNS functionality is concerned, the source port
doesn't really matter as long as the replies get routed to it
properly. But this turns out to be the crux of the problem at
hand.

Query ID

This is a unique identifier created in the query packet that's
left intact by the server sending the reply: it allows the
server making the request to associate the answer with the question.

A nameserver might have many queries outstanding at one time — even multiple queries to the same server — so this Query
ID helps match the answers with the awaiting questions.

This is also sometimes called the Transaction ID (TXID).

QR (Query / Response)

Set to 0 for a query by a client, 1 for a response from a server.

Opcode

Set by client to 0 for a standard query; the other types aren't used in our examples.

AA (Authoritative Answer)

Set to 1 in a server response if this answer is Authoritative, 0 if not.

TC (Truncated)

Set to 1 in a server response if the answer can't fit in the 512-byte limit of a UDP packet response; this means the client will
need to try again with a TCP query, which doesn't have the same limits.

RD (Recursion Desired)

The client sets this to 1 if it wishes that the server will perform the entire lookup of the name recursively, or 0 if it just wants
the best information the server has and the client will continue with the iterative query on its own. Not all nameservers will
honor a recursive request (root servers, for instance, won't ever perform recursive queries).

RA (Recursion Available)

The server sets this to indicate that it will (1) or won't (0) support recursion.

Z — reserved

This is reserved and must be zero

rcode

Response code from the server: indicates success or failure

Question record count

The client fills in the next section with a single "question" record that specifies what it's looking for: it includes the name
(www.unixwiz.net), the type (A, NS, MX, etc.), and the class (virtually always IN=Internet).

The server repeats the question in the response packet, so the question count is almost always 1.

12/30/22, 5:05 PM An Illustrated Guide to the Kaminsky DNS Vulnerability

unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html 6/14

Answer/authority/additional record count

Set by the server, these provide various kinds of answers to the query from the client: we'll dig into these answers shortly.

DNS Question/Answer data

This is the area that holds the question/answer data referenced by the count fields above. These will be discussed in great
detail later.

We'll see these in action as we disassemble our sample query shortly.

Resource Record Types
Ultimately, DNS is a kind of distributed database, and each query or response includes a
name, a type, and (for a response) a value. The resource types represent different
purposes, and no understanding of DNS is complete without knowing about them.

There are dozens of resource record types, though only a few are in common usage. The
rest are experimental, obsolete, or serve obscure purposes that rarely come up in practice.

Common DNS Resource Record Types

Type Description

A This is an IP Address record, and is the most obvious type of data
supported by DNS. Indeed; many users have no idea that DNS deals
with anything other than IP addresses.

NS This describes a Nameserver record responsible for the domain asked
about.

MX The MX record encodes the name of a Mail Exchanger, a system
responsible for handling email for the given domain. Multiple MX records
can be provided for a domain (they included way to specify priority).
Email server software is the main consumer of MX resource records.

Curiously, the mail exchanger for a domain doesn't have to be part of
that domain; it's common for the mailserver at a large hosting operation
to be primary MX for thousands of customer domains.

SOA The Start of Authorities record describes some key data about the
zone as defined by the zone administrator (on the domain master
machine). It includes things such as the contact address for the admin,
and the amount of time that slave nameservers should hang onto the
zone in case the master is unreachable.

CNAME The Canonical Name, more commonly known as an Alias, this allows
providing an alternate name for a resource.

TXT A generic Text record that provides descriptive data about domain.
These are essentially comments, though some applications use them for
programmatic purposes.

It's generally (but not universally) allowed that one name can have multiple resource records, even more than one of the same
type. A common example would be a machine having multiple IP addresses, both of which are entered in DNS:

www.example.com. IN A 192.168.1.3
www.example.com. IN A 192.168.7.149

Here, the name www.example.com has two IP address records associated with it, and both will be returned in answer to an A
query for this name. Note that the order of the addresses as they appear in the file are not maintained in the responses: they're
usually shuffled.

We'll note that the IN token means the INternet class, and this is virtually the only class you'll ever see in practice. Others (such
as Chaos or Hesiod) are defined but are for specialized and mostly obsolete purposes.

Drilling down to a real query
Recalling our query exchange above, we're going to study steps 4 through 7 in some detail: they are most
representative of the DNS name-resolution process without adding duplicative steps.
Ultimately, DNS is a kind of distributed database, and it can look up much more than just an IP address:
there are multiple resource record types involved in a query, and one can't understand the packet
structure without knowing their distinctions.

http://www.dns.net/dnsrd/rr.html

12/30/22, 5:05 PM An Illustrated Guide to the Kaminsky DNS Vulnerability

unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html 7/14

Contrived Data!
In this example we're showing a
hypothetical packet trace for our own ISP's
recursive nameserver, but this is a made-
up example.

We certainly have no way to actually sniff
the real traffic coming and going from their
server, but we'll note that as of this writing,
AT&T had patched this server to avoid this
vulnerability.

We'll note that not every detail is predictable even when the protocol is fully understood: nameservers have some latitude in how
they accomplish a resolution, so a few alternatives are available. We're just choosing one common path through this process.

In this example, we're using the nameserver of our own ISP — dnsr1.sbcglobal.net — (referred to as dnsr1) as the local
recursive nameserver, and we'll find a few things in common for all of them.

In every case, the Question section is the same: "What is the A record for
www.unixwiz.net?". This question is also repeated in the answer — mainly as a
convenience — so it's seen in common in every packet we look at.
The ISP's nameserver usually sets the RD=1 flag (Recursion Desired) on the odd
chance that the other end is willing to do the heavy lifting and go find this answer
for us. Most top-level nameservers are unwilling to do this, so they give us the
best information they have and set RA=0 flag (Recursion Unavailable) to let us
know that we have to do the work ourselves.

In this example, the source UDP port number for all queries from our ISP's
nameserver is the same. It's a common practice for nameserver software to
request a random port from the operating system at startup, then use it for every query.

We observe that the Query ID increments by one each time it sends a new query.

So with this information in hand, let's walk through the steps in detail and see how our "simple" query is actually resolved.

2&3 In this step our ISP's
nameserver queried a root
server for www.unixwiz.net,
and it replied with a list of
global top-level domain
servers that knew about the
.net hierarchy. From this
delegation, the ISP's
nameserver chose one at
random (c.gtld-servers.net),
as shown in step 4.

(not illustrated)

4
 client

to
server

The dnsr1 server at our ISP
grabs one of the GTLD
nameservers received from a
root server (in step 3) and
fires off a second query. This is
essentially the same as the
first; the Question is about the
A record www.unixwiz.net.
Because this is a query — not
a response — the
answer/authorities/additional
records fields are blank (as
shown with a count of zero).

The Query ID value was taken
as the next ID available from
this server's internal counter.

5
 server

to
client

The GTLD server we asked
doesn't know the specific
answer to our question, but it
knows where to ask: it
responds with a series of NS
records that should know how
to handle our request. They
show up in the Authorities
section as cs.unixwiz.net and
linux.unixwiz.net.
We're given hostnames of the
nameservers we ought to
contact, but real network
connections are only made by
IP address: how do we look
these up? Avoiding what would

12/30/22, 5:05 PM An Illustrated Guide to the Kaminsky DNS Vulnerability

unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html 8/14

clearly be a chicken-and-egg
problem, the GTLD
nameserver provides not only
the hostnames of the
authoritative servers, but
their IP addresses too.

These are provided as A
records in the "Additional
Records" section, and are
known as "glue data".
Because this nameserver can't
give us the final answer, it sets
the AA=0 flag (Authoritative
Answer) to zero, indicating
that somebody else knows the
real story and we have to keep
asking around.

But a related note: dnsr1 is a
very busy nameserver, having
perhaps hundreds of queries
outstanding every second.
How does it know that this
reply packet is a response to
that specific pending request?

The answer is: by matching on
the Query ID. Inbound DNS
packets that don't have a
waiting Query ID are ignored.
The TTL is a Time To Live,
discussed later.

6
 client

to
server

In step 5 we received two
nameservers that are
purported to know more about
the unixwiz.net domain, so
one more query is created that
asks the same question —
again! — of these just-learned
nameservers.
This request is really no
different from the previous
queries, though it does
increment the Query ID by one
before sending it off. The idea
is that we keep following these
delegations until we actually
get a real answer, not a
referral.

7
 server

to
client

And at last the answer comes!
Unlike the previous replies,
this one has answer
count=1, and it carries an A
record with the IP address to
satisfy our query.

In addition, this response has
the AA=1 flag set, which
indicates that it's an
authoritative answer (aka
"from the horse's mouth"). If
an answer is provided but with
AA=0, we assume it's from the
server's cache.

The answer also includes the
authority and glue information,

12/30/22, 5:05 PM An Illustrated Guide to the Kaminsky DNS Vulnerability

unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html 9/14

but this time all we're really
interested in is the answer
itself. And the nameserver
used the Query ID of 43562
to match this reply to the
pending request.

As noted previously, these transactions typically occur very rapidly across the internet, and the user is normally unaware that so
much is going on under the hood on his behalf.
But local performance is further enhanced by use of a local cache in the recursive nameservers: this is an important part of the
domain-name system, and gets us one step closer to our security issue.

What's in the cache?
In the DNS lookups we've seen so far, the ISP's resolving nameserver has gone out and
fully resolved each name from scratch, relying on no prior knowledge except the built-in
root hints.

But in practice this full road trip is not necessary: once we get an authoritative answer for
a given name, we can save it in a local cache to use to satisfy future queries directly.
The more clients serviced by a nameserver, the more benefit of the cache: the work of the
full name resolutions is spread out over the whole client base. It may well require quite a
bit of memory in the nameserver, but the amounts of RAM required are peanuts compared
with the benefits.

The Time-To-Live
When a DNS answer is stored in the local cache, it can't keep it forever: this could lead to terribly stale data that
effectively breaks the domains involved.
Fortunately, the recursive nameserver doesn't have the burden of
guessing how long to cache things: the administrator of the zone

specifies this information for every resource record. This is known as a Time To Live
(TTL), and it's a lifetime measured in seconds.

A TTL can be a short as a few minutes, or as long as a week or more: this is entirely
determined by the administrator of the zone.

In our final Step-7 answer above (with snippet to the right), we see the TTL of one hour for the A record in www.unixwiz.net. All
client requests for this resource record in the next hour will be satisfied immediately, from the cache. But once it expires, it's
removed from cache and the next request will force a full lookup from scratch.
But it's not just the A record that's cached; all the other authority data (the NS data
plus associated glue A records) arrive with their own TTLs, and are also cached. This
means that a full lookup for a single resource record could well fill the cache with a
half dozen associated records or more.

12/30/22, 5:05 PM An Illustrated Guide to the Kaminsky DNS Vulnerability

unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html 10/14

This is not "phishing"
Though DNS cache poisoning has similar
end results to phishing — getting a user to
believe a bad site is genuine — it's not the
same thing.

With phishing, a bogus URL is used to
reference the malicious server, but it's
disguised to look like the real hostname
(usually with a bit of clever HTML or CSS).
An attentive user can usually detect this
misdirection by examining the URLs or
hostnames carefully.

With DNS cache poisoning, the very
nature of DNS itself has been subverted
such that hostname-to-IP lookups can no
longer be trusted. The hostnames being
visited are genuine, but they're being
routed to the bad server: this can't be
detected by inspection of links or HTML
source code.

Poisoning the cache
With a good understanding of a properly-functioning DNS, it's time to see where things break. Cache poisoning is where the bad
guy manages to inject bogus data into a recursive nameserver's cache, causing it to give out that bad information to unsuspecting
local clients.
It's not so simple as just sending random DNS packets to a nameserver, as DNS only accepts responses to pending queries;
unexpected responses are simply ignored.

How does a nameserver know that any response packet is "expected"?

The response arrives on the same UDP port we sent it from: otherwise the network
stack would not deliver it to the waiting nameserver process (it's dropped instead).

The Question section (which is duplicated in the reply) matches the Question in
the pending query.
The Query ID matches the pending query

The Authority and Additional sections represent names that are within the same
domain as the question: this is known as "bailiwick checking".

This prevents ns.unixwiz.net from replying with not only the IP address of
www.unixwiz.net, but also fraudulent information about (say)
BankOfSteve.com.

If all of these conditions are satisfied, a nameserver will accept a packet as a genuine
response to a query, and use the results found inside. This includes caching answers, as
well as valid authority and additional data found there too.
But if the bad guy can predict and forge a DNS response packet that's just right, he can
cause all kinds of shenanigans for the victims.

The bad guy normally first chooses his victim by finding a nameserver he believes
vulnerable to poisoning: all of the clients of that DNS server get to unwittingly ride the victim train as well.

Then he finds a target domain, one he wishes to take over. His intent is to fool the victims into visiting his own malicious website
instead of the real deal: by getting www.goodsite.com to resolve to the bad guy's IP address, the user's traffic visits the bad
guy's website instead of the good one.
We noted that unexpected packets were simply dropped, so a bad guy need not get everything right every time: sending many
packets attempting to guess some of the key parameters is likely to prove fruitful with enough attempts.

Guessing the Query ID
In old nameservers (and in our detailed packet trace example), the Query ID simply increments by one on each outgoing request,
and this makes it easy to guess what the next one will be as long as an interloper can see a single query.
We probably can't directly ask the nameserver for its query ID, but we can provoke it into telling us:

1. Bad guy asks the victim nameserver to look up a name in a zone for a nameserver he controls (perhaps test.badguy.com).

He might query the server directly, if it permits recursion from his location, or he might convince a user to lookup a name —
perhaps by including the test hostname on a web page.

2. Victim nameserver receives the request and makes the usual rounds to resolve the name starting at the root servers. Here,
we've put the root and GTLD servers in the same category to separate them from the bad guy's nameserver.

3. Eventually, the victim nameserver will be directed to the bad guy's nameserver: after all, it's authoritative for badguy.com.
4. Bad guy monitors this lookup of test.badguy.com by sniffing the IP traffic going to his own machine, or perhaps even with a

custom modification to the nameserver software, and from this discovers the source port and Query ID used.

Aha!

At this point he knows the last query ID and source port used by the victim nameserver.

But the thoughtful might wonder: so what? This hasn't poisoned anything yet, and there's no need to engage in DNS shenanigans
for badguy.com anyway. After all, the bad guy is already authoritative for his own zone.
True enough, but this was only the first step: the next one engages in DNS shenanigans for other domains.

Shenanigans, Version 1
With the ability to easily predict a query ID, and since our victim nameserver always sends queries from the same UDP port, it
should be easy enough to cause some trouble.

In this illustration, we'll attempt to poison a particular nameserver with a fraudulent IP for a legitimate banking website,
www.BankOfSteve.com. The bad guy's intention is to get all of the ISP's customers to visit his own malicious site instead of the
real one operated by the Bank.

12/30/22, 5:05 PM An Illustrated Guide to the Kaminsky DNS Vulnerability

unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html 11/14

Step 1 — Bad guy sends a DNS query to the
victim nameserver for the hostname it wishes to
hijack. This example assumes that the victim
nameserver allows recursive queries from the
outside world.

Step 2a — Knowing that the victim will shortly
be asking ns1.bankofsteve.com (as directed
from the root/GTLD servers) for an IP address,
the bad guy starts flooding the victim with forged
DNS reply packets. All purport to be from
ns1.bankofsteve.com, but include the answer
with the IP of badguy's fraudulent webserver.
Steps 2b & 3 — Root/GTLD servers provide
referral to ns1.bankofsteve.com. This may be
multiple queries, but we're showing just one for
simplicity.

Step 4 — victim nameserver asks
ns1.bankofsteve.com for the IP address of
www.bankofsteve.com, and it uses query ID
1001 (one higher than the previous query).

Step 5 — the real nameserver provides a
legitimate response to this query, with
QID=1001. But if the bad guy has successfully
matched the query ID in the step 2a flood, this
legal reply arrives too late and is ignored. Oops.
Step 6 — With the bogus IP address (of the bad
guy's webserver) in cache it provides this
poisoned answer to the requesting DNS client.
Boom.

Step 7 (not illustrated) — future DNS
clients asking for
www.bankofsteve.com will receive
the same fraudulent answer.

The rule is: first good answer wins. Most of
the forged answers are dropped because the
Query ID doesn't match, but if just one in
the flurry of fake responses gets it right, the
nameserver will accept the answer as
genuine.

And because that satisfies the request, the
real answer that arrives later is dropped,
because the query is no longer pending.

In any case, once the bad guy gets the
answer from the victim's nameserver, the
matter is closed, and he can stop flooding
the victim.
We'll note that even though this illustrates
trying to beat just the reply from
ns1.bankofsteve.com, our forged DNS
traffic could actually match the query ID of
any of the prior steps.

This includes matching an earlier reply from
the root server or the GTLD (.com) server: if
the query ID matches, our fake authoritative
wins, and pollutes the cache. This is a race,
but only the attacker knows it's playing.

The name can't already be in the
cache

If www.bankofsteve.com is already
in the victim nameserver's cache, all of
the external queries are avoided, and there's simply no way to poison it in this manner.

If the bad guy still wants to poison that particular hostname, he has to wait for it to expire from cache (as determined by the
TTL).

The bad guy has to guess the query ID

12/30/22, 5:05 PM An Illustrated Guide to the Kaminsky DNS Vulnerability

unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html 12/14

Is it random?
Older nameservers used a terrible random
number algorithm that allowed a bad guy
to predict the next Query ID given an
existing one, and this was used by
attackers to commit cache poisoning.

Modern software uses real random number
algorithms that don't fall for this.

This is made easy with (now-obsolete) nameservers that increment the Query ID by one each time — even a busy
nameserver has a fairly small range to guess from.

The bad guy has to be faster than the real nameserver

If the victim nameserver and the real nameserver are topologically close (network wise), then the steps 2/3 and 4/5 may
complete so quickly that the bad guy has a too-small window to exploit.

Mitigations
An obvious mitigation here is to randomize the Query ID.

With sequential Query IDs, the bad guy has a fairly limited range of guesses required
once he observes a single current Query ID. If he sees QID=999, then he may flood with
QIDs 1000-1029 in an attempt to make at least one match.

Experience has shown this is an easy window to beat.
But if the nameserver chooses random Query IDs, then the attacker has the full 16-bit
pool to choose from — that's 64k values — and this is a much harder target to hit in the
narrow window of time while the victim is going through the routine resolution steps.

Though forging 20 packets in routine name-resolution time is straightforward enough, doing so with thousands of packets is a
much more substantial challenge.

So true randomization of Query IDs raises the bar quite a bit.

Dan's Shenanigans
So far we've seen how to poison a single record, but this has less impact than expected: it's just one record, and many properties
require multiple hostnames to operate, and it's harder to hack them all.

Dan Kaminsky found an approach that's dramatically more effective than this, and it caused quite a furor in the security
community. The general approach is the same as the simple approach shown above, but the key difference is the nature of the
forged payload.

In the simple example, our intention was to poison the final answer, the A record with the IP address, but what Dan discovered is
that we can go up one level and hijack the authority records instead.
Before undertaking the attack, the bad guy configures a nameserver that's authoritative for the bankofsteve.com zone, including
whatever resource records he likes: A records, MX for email, etc.

There's nothing stopping anybody from configuring his own nameserver to be authoritative for any domain, but it's pointless
because the root servers won't point to it: it's got answers, but nobody ever asks it a question.

Step 1 — bad guy client requests a random name within the target domain (www12345678.bankofsteve.com),
something unlikely to be in cache even if other lookups for this domain have been done recently.

Step 2a — As before, the bad guy sends a stream of forged packets to the victim, but instead of A records as part of an
Answer, it instead delegates to another nameserver via Authority records. "I don't know the answer, but you can ask over
there".
The authority data may well contain the "real" bankofsteve.com nameserver hostnames, but the glue points those
nameservers at badguy IPs. This is the crucial poisoning, because a Query ID match means that the victim believes that
badguy's nameservers are authoritative for bankofsteve.com.

The bad guy now owns the entire zone.

Curiously, the rest of the steps don't matter: the point of this process was to fake out the victim into thinking that badguy
runs the domain in question, and that would have been successful in this step.

Once one of the victim's queries has been poisoned — it could be any in the chain — all the rest are directed to badguy's
servers.

This is a devastating attack: by owning the entire target domain, the bad guy controls essentially everything with respect to that
resolving nameserver. He can redirect web visitors to his own servers (imagine redirecting google.com), he can route email to his
own servers via serving up bogus MX records.

The bad guy will typically set a very high TTL in the poisoning responses so that the victim will keep the bogus data in cache as
long as possible.

Flurry of queries
Our example has shown a single query being hijacked, but this is unlikely to be successful: because of Query ID randomization, it's
not likely that that the bad guy will manage to get a hit in the short time required to match on 64k IDs.
Instead, the bad guy issues a flurry of queries, each for a different random name under the main domain. The first request caused
the nameserver to perform the usual root-first resolution, but it eventually caches the valid ns1.bankofsteve.com values.
Subsequent queries within this domain go directly to that nameserver, skipping the root steps.

But the next request for a different random name (which certainly won't be in cache) causes an immediate query to the valid ns1
server. The bad guy then throws a flood of forged data at the victim about that second random name, though the odds here are
still pretty long.

12/30/22, 5:05 PM An Illustrated Guide to the Kaminsky DNS Vulnerability

unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html 13/14

DJB Was Right
One nameserver is notable for having
gotten both the query-id and source-port
randomness right from the start: DJBDNS
by the legendary Daniel J. Bernstein.

Though long a lightning rod for controversy,
he's clearly walked the walk on security:
there's been just one minor security
vulnerability in DJBDNS.

Just for the sake of discussion, let's assume
that the bad guy can generate 50 forged
replies for each random name query before
the real reply arrives from the real
nameserver. This appears to be a very small
chance, but when repeated over and over —
and run from automated tools — success by
the bad guy is likely.

It's been reported that success can
commonly be achieved in 10 seconds.

Going for the top
Our examples have all focused on hijacking
an end domain, but the same techniques
can do the same thing up a level: taking
over .COM, .NET, or the like.

By poisoning the Authority records for .COM
and the like, the victim nameserver will
route all DNS lookups to the bad guy's
nameservers. This effectively hijacks all
names under that top level, including
domains he didn't actually request. This
gives a great deal of flexibility even though
it may well require substantial computing
and network resources to serve the flood of
requests that this hijacking must generate.

What's the fix?
This all sounds awful: how does one fix this?

As has been alluded to several times, it's the
small space — just 16 bits — of the Query
ID that makes this attack possible. Though
certainly one might wish to increase that ID
to something larger (perhaps 32 bits), it's
simply not possible do that in the short term
because it would break DNS on the internet:
the fields are what they are, and they can't
be changed casually.

But an additional source of randomness is required nevertheless, and that's been done by randomizing the source port. Rather
than use just a single UDP port, which is trivial to discover, a much larger range of ports is allocated by the nameserver and then
used randomly when making outbound queries.
As one would imagine, the nameserver would keep track of which source port was used for each query: replies arriving on the
wrong port would be discarded just as if the Query ID failed to match.

Microsoft's updated DNS server is said to preallocate 2,500 UDP ports to use for these random queries, and for discussion we'll
round this down to an even power of two: 2 11 = 2,048. This yields this much larger transaction space:

Increasing the search space from 64k to 134M provides far better odds for the good guys.
We presume that each nameserver provides a way of setting how large of a pool to use for these source ports, as well as a way of
excluding certain port numbers known to be required for other purposes.

http://en.wikipedia.org/wiki/Djbdns
http://marc.info/?l=djbdns&m=123613000920446&w=2

12/30/22, 5:05 PM An Illustrated Guide to the Kaminsky DNS Vulnerability

unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html 14/14

Home Stephen J. Friedl Software Consultant Orange County, CA USA

Summary
This has been an exceptionally serious vulnerability because it undermines the very faith in DNS: this is at the core of the internet.
Most experts believe that if you can't trust DNS, all else is lost, and we're of this same mind.
There is far more detail about this vulnerability than we can present here, and we'll urge the reader to consult other resources
(especially Dan's presentation).

But we can include a few (ahem) random notes about this matter that didn't seem to fit in elsewhere, and seem important and/or
interesting enough to include in this paper.

Patch your servers: Tools exist to make exploit-in-a-box available to even low-skilled bad guys.

Authoritative-only nameservers are not vulnerable because they have no cache to poison, but we'd be surprised if no small
number of "auth only" nameservers actually provided recursive service to at least some clients.
A nameserver need not be directly visible to the Internet to be exploitable. By convincing a user to visit a particular web
page, it can trigger a chain of events that reliably lead to poisoning.

Even patched servers may still be vulnerable if an intervening firewall performs Port Address Translation in a way that un-
randomizes the source ports.

It's been suggested that DNSSEC or IPv6 are solutions to this problem, but this is only in theory. Both of these technologies
have to be fully rolled out to be effective, and this is likely years away, at best.
The Secure Sockets Layer (SSL) is only a partial protection against being redirected to malicious websites. Putting up a fake
BankOfSteve.com website will have the wrong SSL certificate name (which is a warning to the user who's paying attention),
but the great majority of users skip right through those warnings.

But the bad guy can subvert even SSL: since many Certificate Authorities validate a user's control over a domain by sending
email, hijacking a mailserver by attacking the cert vendor's resolving DNS, this may well mean that an attacker can obtain a
fully-valid certificate for the target domain.

This is very scary.

References

Dan Kaminsky's Black Hat presentation (PowerPoint) — Excellent reading.

DNS and BIND, O'Reilly — The definitive book on DNS.
TCP/IP Illustrated, Volume 1: The Protocols, W. Richard Stevens — the definitive book on TCP/IP.

BIND (Berkeley Internet Name Domain) — The most popular nameserver, with a long history of security issues.

DJBDNS nameserver — Always an attitude, but never a security vulnerability.
Mind Of Root podcast #63 — interviewed regarding the DNS vulnerability

DNS Cache Poisoning at Wikipedia

Adobe Illustrator CS3™ — the excellent software used to make the all the diagrams in this paper.
Yes, this took a long time to write.

First published: 2008/08/07

http://unixwiz.net/
http://unixwiz.net/contact.html
http://unixwiz.net/techtips/techtips.rss
http://www.doxpara.com/DMK_BO2K8.ppt
http://en.wikipedia.org/wiki/Port_address_translation
http://en.wikipedia.org/wiki/DNSSEC
http://en.wikipedia.org/wiki/Ipv6
http://www.doxpara.com/DMK_BO2K8.ppt
http://oreilly.com/catalog/9780596100575/index.html
http://www.amazon.com/TCP-Illustrated-Protocols-Addison-Wesley-Professional/dp/0201633469
http://www.isc.org/sw/bind/
http://cr.yp.to/djbdns.html
http://www.mindofroot.com/2008/08/24/episode-63-dns-mess/
http://en.wikipedia.org/wiki/DNS_cache_poisoning
http://www.adobe.com/products/illustrator/

