OAuth 2

Computer Science Hot Topics
Patrick P. Bucher and Christopher J. Christensen

May 14, 2019

Abstract

OAuth 2 is a delegation protocol that lives within the context of HTTP. It is mainly
used to connect websites to one another and to secure APIs exposed to the web.
OAuth 2 enables resource owners to delegate (limited) access to clients without
sharing their credentials. OAuth 2 is neither an authentication nor an authoriza-
tion protocol, but it defines the mechanisms to build such protocols. It does not
define any cryptographic mechanisms, but leaves those decisions open for the
implementation. The authorization server plays a key role in every web applica-
tion that is secured through the means of OAuth 2. This paper gives an overview
of the components and mechanisms involved in an OAuth 2 secured web appli-
cation. Furthermore, a demo OAuth 2 application is presented as a case study to
elucidate the role of and communication between different components involved
in an OAuth 2 deployment. The JWT token format and common vulnerabilities of
OAuth 2 are the subject of additional chapters.

Contents

Contents

i Introduction
1.1 The OAuth2BasiCS« v v v e e e e e e e i e i
.................................
1.1.2 AccessToken o v i i i i e
1.1.3 Protocol FIow
.2 The Dark Ages before OAuth2
1.3 The Attraction of OAuth 2 i ..
1.3.1 The Limitations of OAuth 2

R Case Study: Gossip Server
2.1 OAuth 2 Authorization Grant: A Conversation
2.1.1 Actl:GettingaToken
2.1.2 ActIl: UsingaTokeno uuiiii..

B JSON Web Tokens (JWT)
B.1 OAuth2ToKens o v sttt st
B.2 Overview of OAuth 2 Token Implementationy
B.3 Structured Tokens: [SON Web Tokens JWT)
B.3.1 Unsigned J[SON WebTokeng
B.3.2 Signed [SON Web Tokend
B.3.3 Validating J[SON Web Tokens: 3 Example§
B.4 OAuth 2 Token Lifecyclg

4 OAuth 2 Vulnerabilities
#.1 Client Vulnerabilities
h.1.1 SecretTheftl
M.1.2 CSRFAttackS e
.2 Protected Resource Vulnerabilities
M.2.1 TokenLeaK iiiieinini...
“.2.2 Cross-Site Scripting (XSS} oo e
.3 Authorization Server Vulnerabilitie§
“.3.1 Session Hijacking
“.3.2 Redirect URI Manipulation

5 Conclusion

11

13
13
13
14
14
16
17
19

20
20
20
20
21
21
21
22
22
22

24

References

List of Figures

ist of Tables

Contents

25

25

25

1 Introduction

1 Introduction

This section discusses what OAuth 2.0 is (henceforth OAuth 2, without the zero),
and, especially, what it is not. Often times, OAuth 2 is perceived as some sort of
security or authentication library that is capable of things way beyond its scope.
Also, this section will mention what OAuth 2 is used for, how those ends were
achieved before OAuth 2, and why OAuth 2 has gained traction.

1.1 The OAuth 2 Basics

OAuth 2 is, simply put, a protocol that is used to authorize the access to protected
resources. Since it works as a means to grant third-party applications limited ac-
cess to these protected resources or HTTP services on behalf of a resource owner,
itis often referred to as a delegation protocol (Richer & Sanso, 2017, p. 3). Ifa user
is shown the option to «login with Facebook» (or Google, or GitHub, etc.), OAuth
2 is probably being used.

1.1.1 Roles

The OAuth 2 protocol defines four roles that are listed below (Hardt, 2012):

1. Resource Owner: Entity that grants access to protected resources.

2. Resource Server: Server that hosts the protected resources. Handles the
requests to protected resources using access tokens.

3. Client: Application that sends requests to retrieve protected resources on
behalf of the resource owner, once it has been granted authorization.

4. Authorization Server: Server that supplies access tokens to a client after the
resource owner has been authenticated and has obtained authorization.

1.1.2 Access Token

The access token can be viewed as the right to access a requested protected re-
source. This does not implicitly mean that the token will grant full access to all
protected resources on a Resource Server. Often, or mostly, an access token only
provides limited access to delegate specific actions by a resource owner (Richer
& Sansq, 2017, p. 4).

1 Introduction

1.1.3 Protocol Flow

The flow of interactions between the OAuth 2 roles are as follows (Richer & Sanso,
2017, p. 5-6):

1.

An application (client) sends an authorization request directly to a resource
owner, or, preferably, indirectly through an authorization server.

. The client is authorized and receives a grant which represents the resource

owner’s authorization credentials.

. The client can now request an access token from the authorization server

with the freshly obtained grant.

. The client is then authenticated by the authorization server once it has suc-

cessfully validated the authorization grant. Then the authorization server
creates and issues an access token.

The client can now request protected resources from the resource server
with the access token.

. If the access token has been successfully validated, the resource server pro-

vides the client with the requested resources.

1.2 The Dark Ages before OAuth 2

Before OAuth 2, there were many alternatives to grant access to protected re-
sources. Common approaches such as Credential Sharing, Ask The User, Universal
Key and Special Password are explained briefly in this section. It is important to
note that in none of these approaches an authorization server is used.

Credential Sharing This method copies a resource owner’s credentials that are

then replayed to the protected resource. It therefore requires the user to
utilize the same credentials at the protected resource as at the client appli-
cation. Since the user is exposing his credentials to the client application,
the client is impersonating the user. This leaves no way for the protected
resource to tell if the user is requesting resources, or if the user is being im-
personated. This can make sense if services and resources are offered by
the same company, but causes tracability issues (Richer & Sanso, 2017, p. 7).

1 Introduction

Ask The User The Ask The User approach is a common practice despite the dan-
gers that it poses. Until recently, Facebook asked new users for their cre-
dentials to their email account (Khalid, 2019), for example. This approach
is used when credential sharing is not offered by the service holding a re-
source, and the client has no way to obtain the user’s credentials across those
different security domains. In this approach, the user is then asked for his
username and password, which are then replayed on the protected resource
(Richer & Sansq, 2017, p. 8). The mechanism is similar to Credential Sharing,
but more transparent to the user.

Universal Key A user can be given a universal key, which can be used to request
protected resources directly. The problem is, that if this key is stolen, the re-
sources are entirely and irrevocabely exposed. The universal key also does
not work on a by-user basis, but globally for all users. This approach only
makes sense between two trusted parties (Richer & Sanso, 2017, p. 10).

Special Password The special password in this case represents a password that
is specifically created solemnly on the side of the protected resource for
sharing with third-party-services. This means the user need not share his
credentials with the third-party services. Although this is a more desirable
approach, the user is now required to keep track of yet another password
(Richer & Sanso, 2017, p. 10).

1.3 The Attraction of OAuth 2

The insecure and unsatisfactory approaches mentioned before, even though pos-
sibly still in wide use, are all obsolete nowadays. OAuth 2 is a solution that lets
users grant limited and fine-grained access to their protected resources sepa-
rately for different clients. This approach requires an authorization server: a
system thatis trusted by the protected resource and the resource owner alike. The
authorization server is aware of all the granted rights and issues special-purpose
security credentials for client access of a specified scope: access tokens. No cre-
dentials are shared in the process (Richer & Sanso, 2017, p. 11).

An authorization server might require clients to authenticate themselves, so
that only authorized clients can retrieve grants for protected resources. (This
looks similar to the Universal Key approach, but here the pre-shared secret key
is not used for the resource access, which only works with a valid access token,

1 Introduction

but only for the authentication of the client itself.) Another similarity to the ap-
proaches discussed before is that OAuth 2 does not require the user being present
when resources are accessed on his behalf (Richer & Sanso, 2017, p. 14).

Having protected resources being accessed without the user’s presence might
sound intransparent, but one must remember that the user gave his consensus for
the access delegation earlier in the process. Therefore it is important that clients
state their request access scopes correctly and transparently. This approach is
often referred to as TOFU: Trust On First Use (Richer & Sanso, 2017, p. 15).

1.3.1 The Limitations of OAuth 2

Even though OAuth 2 solves the delegation problem well, it is no silver bullet.

* OAuth 2 is neither an authentication nor an authorization protocol, it is just
a framework to base those kinds of protocols onto.

» The authorization server plays a key role in every OAuth 2 deployment and
thus bears the risk of being the single point of failure for security breaches.

* OAuth 2 lives in the context of HTTP and requires secured connections (TLS)
to be of any real use.

» Delegating access to other users (as opposed to clients) is not provided by
OAuth 2. However, this can be implemented using the UMA (User Managed
Access) protocol, an OAuth 2 extension.

» Both the protected resource and the authorization server need to under-
stand the token format. (On the plus side, the client does not need to.)

Most of these shortcomings are limitations in the scope of the protocol defini-
tion, and are addressed by additional protocols and standards, some of them are
OAuth 2 extensions. The key role the authorization server plays bears a high risk.
It is easier though to secure one critical system well than to secure a multitude of
systems equally sufficient (Richer & Sanso, 2017, p. 18-20).

The next chapter goes into more detail on the components in OAuth 2, and how
they interact with one another in a process called the Authorization Grant, the
most common OAuth 2 process.

2 Case Study: Gossip Server

2 Case Study: Gossip Server

A practical example is often useful to gain a better understanding of a process re-
quiring different actors and multiple steps. The simple Gossip Application, which
can be found on GitHub (https://github.com/patrickbucher/oauth2-demo, with
further information on how to run the applications and how to play with it),
demonstrates the OAuth 2 authorization grant flow with three web applications
written in Go:

The client, which offers a web interface to retrieve gossip from a backend appli-
cation.

The resource, which offers a REST endpoint that provides gossip to authorized
clients and users.

The authserver, which lets the client authorize itself to get access tokens, and
validates access tokens for the resource before any gossip is delivered to the
client.

The client has a client_id with a client_secret (pre-shared between auth-
server and client), so that the client can authenticate against the authserver. The
client does not know the authserver, it just knows how to authenticate towards
any authorization server: with its credentials, that is.

The resource owner has its own gossip stored on the resource server, and wants
to access it through the client. The resource owner is neither aware of the resource
server, nor of the authserver, but knows how to access the client.

The resource server knows the coordinates of the authserver, and also knows
that any request to its resources (the gossip) must be authorized using an access
token, which must be verified against the authserver.

2.1 OAuth 2 Authorization Grant: A Conversation

Even though the great Dijkstra frowned at antropomorphisms in computer sci-
ence (Dijkstra, 1985), seeing the components of a system as human-like actors can
often help gaining clarity. It is true that those actors do not «<want» or «dismiss»
anything on their own, it is the programmer’s intention which is codified in those
components. And the programmer needs to take different points of view when
developing or understanding those components, and be aware of what compo-
nents «<knows» what and when.

https://github.com/patrickbucher/oauth2-demo

2 Case Study: Gossip Server

Resource Owner

%:

Authserver { 16 15

Client

12

Resource

Figure 1: The OAuth 2 Authorization Grant

A possible conversation between the actors of an OAuth 2 grant process - the
resource owner, the client, the authorisation server, and the protected resource —
might look as follows (the process can be followed along on figure [l, page 9.

2.1.1 ActI: Getting a Token

In the first act, the protagonists are negotiating the access rights of a resource
owner delegated to the client. The result of this process is the access_token, which
is an artifact representing the granted access right.

1 Resource Owner to Client I have some gossip stored on the resource server.
Please retrieve that gossip for me, you can tell the resource server that my
name is «Joe».

2 Client to Resource Joe asked me to retrieve his gossip for him. Could you

2 Case Study: Gossip Server

please hand me that over? I leave my coordinates, and a state identifier,
justin case...

3a Resource to Client Really? How can I be sure that it’s really Joe asking for his
gossip? If it really were Joe to ask me for the gossip, you’d bring along some
access_token to prove that Joe issued the request. Anybody could ask me to
hand over Joe’s gossip, but nobody but Joe has the rights to access it. I don’t
even know if you are trustworthy at all. You first must prove it! So here’s the
deal: Take this address, it belongs to the authserver. I'm going to send it to
Joe — or whoever is using you at the moment... if somebody is actually using
you! Joe has to identify himself with his username and password, and in the
same step tell the authserver that you are a trustworthy client. I’'m writing
down the coordinates of your /callback endpoint you told me about, so that
the authserver can come back to you after Joe authorized you, and I make
sure the authserver gets that note when I’'m redirecting Joe to it. I’ll also
forward your state identifier, so you can remember this request later. OK,
see you later... maybe.

3b Client OK, let me... Wow! What is happening? The resource owner is getting
forwarded away from me!

4 Authserver to Resource Owner Hi there, I'm the authserver. Remember me?
You probably registered here and even verified your email address some
time ago. The protected resource sent you here, because some client tried
to access your resources on your behalf. I don’t know if that’s fine for you.
If you really requested the client to get the protected resource for you, then
please tell me your username and password. When you do that, you auto-
matically authorize the client to get your resources.

5 Resource Owner to Authserver Hey, of course I remember you. I use you
now and then to login to web sites that trust you. So my username is «joe»
and my password is... [unintelligible]. It really was me who asked the client
to fetch the resource for me, so you can trust it.

6a Authserver to Resource Owner Hey Joe, I found your account, and the pass-
word you entered matches what is stored in my credentials store. I'm writ-
ing down that you trust the client from now on. The resource (we trust each
other) gave me a note on how to send you back to the client, which I'm go-
ing to do now. Here’s also an auth_code the client can use once to get an

10

2 Case Study: Gossip Server

access_token for you. Goodbye Joe! See you again once your token is ex-
pired!

6b Resource Owner OK, it looks like there’s a forward going on again...

7 Client to Authserver Wow, I just got called back from you! The resource told
me that this is going to happen! Glad to hear that Joe trusts me. (It’s not that
much of a surprise, actually, because he told me already that I should fetch
his resource.) And I remember that state identifier, it belongs to the initial
request Joe let me do. Thanks also for your coordinates and the auth_code.
I’'m going to use them right away to fetch an access_token from you. By the
way: We already know each other. I once registered with my client_id,
and you gave me this client_secret you hopefully still remember! Let me
send those to you base64 encoded as a HTTP basic Authorization header.
OK, can I please get an access_token for Joe?

8 Authserver to Client Hello again, thanks for calling my /token endpoint. Let’s
see... Indeed, Iremember the client_id and client_secret you sent to me,
all so nicely and securely wrapped up in the Authorization header. And
this is really the auth_code I just sent you before. And it belongs to Joe. And
Joe authorized you as a client. The auth_code is a one-time password, so
let’s forget about it once you got the access_token, all right? So here’s your
access_token, I'm going to remember it. Now hurry up, this token is going
to expire soon! And we don’t want Joe to go through all this hassle again, do
we?

9 Client to Authserver Great, thanks! I’'m going to replay Joe’s initial request
right away, but this time I’ll attach that token you’ve given me to the resource
in the Authorization header. See you later, maybe...

2.1.2 Act II: Using a Token

Once an access_token is granted, it can be used to retrieve resources. The second
act can be replayed many times, as long as the access_token is valid.

10 Client to Resource So, here’s Joe’s initial request again, but this time, I also
got this nice access_token with me. So open up and hand me over Joe’s
gossip! (He really is on a mission and wants to spread it...)

11

2 Case Study: Gossip Server

11 Resource to Client OK, now this is an access_token? I don’t know, but the
authserver does! Hang on, I quickly double check, if that is valid.

12 Resource to Authserver Hey, it’s me, I've just redirected some client to you
a couple of seconds ago. I remember that he wanted to get Joe’s resources.
He gave me this access_token. Is that thing valid?

13 Authserver to Resource Hello, my dear old friend! Let’s see: Indeed, I issued
such an access_token, and it was only seconds ago. So the token is still valid.
And I remember that I issued it for Joe’s scope. Perfectly fine with me, go
ahead and hand over Joe’s resource to that client!

14 Resource to Client Are you still there? OK, great! I have good news for you!
The access_token you sent to me is valid! So here’s Joe’s gossip! You can
come back later to me. I'll always check that token against the authserver,
because only he knows all the security details. (I just know some gossip.)

15 Client to Resource Owner Hey Joe, here I am again! And I got your gossip
with me. I'm going to display it as a HTML page. When you access it anytime
soon, you’re not required to authenticate yourself and authorize me again,
because me, the authserver, and the resource managed to sort that out for
you. But if you wait for too long, we might need to go through that whole
process again. I'm so happy that we are all compiled programs that do just
execute and not think too much...

16 Resource Owner to Client Hey, thanks for all that work! I’'m now going to
enjoy my gossip. See you later!

12

3 JSON Web Tokens (JWT)

3 JSON Web Tokens (JWT)

This chapter is mainly about structured JSON Web Tokens. However, there will
also be a brieflook throughout the chapter at what a token can be, and what other
token implementations exist. All code examples are in JavaScript.

3.1 OAuth 2 Tokens

Since nothing works without them, tokens are viewed as the centerpiece of OAuth.
A client requests a token from the authentication and authorization server (hence-
forth «auth server») and passes it on to the protected resource. The protected re-
source validates it and verifies if the attached permissions and rights allow the
client to proceed with its request. The tokens can be seen as the result of the
delegation act.

It is important to note that OAuth 2 does not define what a token is, thus leav-
ing the implementation to each deployment. OAuth 2 can therefore be used in
many different deployments with varying requirements. This is one of the rea-
sons OAuth 2 is chosen over other protocols such as SAML or Kerberos.

Upon receiving a token, the client must merely send the token along with its
request. This means that the client does not need to know anything about what a
token is or how it is implemented. The only thing the client needs to know, is how
to obtain and use it. Both the auth server and protected resource need to know
more about it, though. The auth server must know how to create one, whereas
the resource owner needs to know how to recognize and validate it.

3.2 Overview of OAuth 2 Token Implementations

Since OAuth 2 does not dictate the form of its tokens, there are many different
implementations.

One approach would be to generate a random string which is then stored in
a database. This random string represents the token. Upon receiving the token,
the resource owner looks the string up in this database and retrieves additional
information about a client’s or user’s permission and rights. The downside of this
approach is that the auth server and resource owner both need to have access to
a shared database. This is not always adviseable nor possible. (Another option is
that the protected resource verifies the token at the auth server, as it was done in
the case study in the chapter before.)

13

3 JSON Web Tokens (JWT)

What will be looked at closer in this chapter is the implementation of structured
tokens. In this case, tokens carry information, which the protected resource can
parse and use for validation. An extension of this approach would be the use of
token introspection, although this will not be the subject here, because it does not
really further enhance the basic understanding of tokens in itself.

3.3 Structured Tokens: JSON Web Tokens (JWT)

According to the IETF «JSON Web Token (JWT) is a compact, URL-safe means of
representing claims to be transferred between two parties» (Jones, Bradley, &
Sakimura, 2015, p. 1). It carries all the information necessary in itself to grant the
client or the user access to a protected resource. It thus enables indirect commu-
nication between the auth server and resource owner without further API calls.
The information that the JWT carries could be for instance an expiration time-
stamp or information about the user who gave authorization to it. Although JWT
does allow for any keys and values to be placed into its JSON objects, they do set
a guideline with a few standard claims to avoid key clashing between different
implementations. These claims can be seen in table I, page [15 (Richer & Sansd,
2017, p. 185).

The JSON Web Token is, as its name implicates, a JSON object, which gets en-
capsuled into a suitable format for transmission over, for instance, HTTP. There
are two main distinctions between different types of JWTs: unsigned and signed
tokens.

3.3.1 Unsigned JSON Web Tokens

The unsigned JWT consists of two parts that are separated through a period. The
first part represents the header, which contains information about the type of the
token, and other information the resource owner needs to know about the token
itself. In its JSON form before encoding, it could look as follows:

{
Iltypll : IIJWTII ,
"alg": "none"

The second part of the token is called payload. The payload carries all data that
the protected resource needs to validate and verify a request from the client.

14

Claim Name

3 JSON Web Tokens (JWT)

Claim Description

iss

sub

aud

exp

nbf

iat

jti

The issuer of the token. This is an indicator of who created this
token, and in many OAuth 2 deployments this is the URL of the
auth server. This claim is a single string.

The subject of the token. This is an indicator of who the token is
about, and in many OAuth 2 deployments this is a unique iden-
tifier for the resource owner. In most cases, the subject needs
to be unique only within the scope of the issuer. This claim is a
single string.

The audience of the token. This is an indicator of who is sup-
posed to accept the token, and in many OAuth 2 deployments
this includes the URI of the protected resource or protected re-
sources that the token can be sent to. This claim can be either
an array of strings or, if there’s only one value, a single string
with no array wrapping it.

The expiration timestamp of the token. This is an indicator of
when the token will expire, for deployments where the token will
expire on its own. This claim is an integer of the number of
seconds since the UNIX Epoch, midnight on January 1, 1970, in
the Greenwich Mean Time (GMT) time zone.

The not-before timestamp of the token. This is an indicator of
when the token will begin to be valid, for deployments where
the token could be issued before it becomes valid. This claim
is an integer of the number of seconds since the UNIX Epoch,
midnight on January 1, 1970, in the GMT time zone.

The issued-at timestamp of the token. This is an indicator of
when the token was created, and is commonly the system time-
stamp of the issuer at the time of token creation. This claim
is an integer of the number of seconds since the UNIX Epoch,
midnight on January 1, 1970, in the GMT time zone.

The unique identifier of the token. This is a value unique to
each token created by the issuer, and it is often a cryptographi-
cally random value in order to prevent collisions. This value is
also useful for preventing token guessing and replay attacks by
adding a component of randomized entropy to the structured
token what would not be available to an attacker.

Table 1: Standard JSON Web Token Claims

15

3 JSON Web Tokens (JWT)

var payload = {
iss: 'http://localhost:9001/",
sub: code.user ? code.user.sub : undefined,
aud: 'http://localhost:9002/',
iat: Math.floor(Date.now() / 1000),
exp: Math.floor(Date.now() / 1000) + (5 * 60), // five minutes
jti: randomstring.generate(8)
H

To create an unsigned JWT, one merely needs to create a header and payload,
serialize the JSON objects as strings, and then encode the two strings using base64
URL encoding. These two strings made out of header and payload are then con-
catenated via a period followed by a period at the end. An unsigned JWT could
look something like this:

eyJ0eXA10iJKV1QiLCJhbGci0iJub251In0.eyJzdWIiOiIXxMjMONTY30DkwIiwib
mFtZSI6IkpvaG4gRGI1IiwiYWRtaW4iOnRydWV9.

The downside of an unsigned JWT is obviously that it has no encryption, so that
any client can dissect, analyse and then create its own tokens. They are therefore
considered unsafe.

3.3.2 Signed JSON Web Tokens

Signed JWTs are encrypted before transmission and are therefore safer than un-
signed tokens. Signed JWTs have a third part that is again concatenated with the
header and payload at the end of the token. This third part holds information
about how the token was encrypted. JWT has created a suite of useful specifica-
tions called JSON Object Signing and Encryption standards, or JOSE in short, to
help with the encryption of these tokens. It covers various topics such as encryp-
tion, signatures and key storage formats.

There are many ways of creating signed JWTs. There are also two main sign-
ing types: asymmetric and symmetric signing. Symmetric signing uses a shared
secret between the auth server and protected resource. The token could then
be encrypted using HS256. The header would then look something like the code
below:

var header = { 'typ': '"JWT', 'alg': 'HS256'};

16

3 JSON Web Tokens (JWT)

The header and payload are then encrypted as shown in the next code example.

var access_token = jose.jws.JWS.sign(header.alg,
JSON.stringify(header),
JSON.stringify(payload),
new Buffer(sharedTokenSecret).toString('hex'));

The token then looks something like this:

eyJ0eXA101JKV1QiLCJhbGci0iJIUzITNiJ9.eyJpc3MiOiJodHRwWOi8vbGIjYW
x0b3NOOjkwMDEVIiwic3ViIjoiOVhFMy1KSTMOLTAWMTMyQSISImF1ZCI6Imh
0dHA6LY9sb2NhbGhvc3Q60TAWMi8iLCJpYXQi0jEONjCcyNTEWNzMsImV4cCI6
MTQ2NzI1TMTM3MywianRpIjoiaEZLUUpSNmUifQ.WqRsY03pYwuJTx-9pDQXft
kcj7YbRn950-16NHrVugg

The problem with symmetrical approachesis that the auth server and protected
resource have to be tied closely to be able to share a secret. If this is not the case,
then the asymmetrical approach may be more suitable. Here the auth server
has a private and a public key, which it uses to create the tokens. The protected
resource must have access to the auth server’s public key in order to verify the
token. One possible way to sign such a token would be with the RS256 signature
method by JOSE. The header would then look as follows:

var header = { 'typ': "JWT', 'alg': rsaKey.alg, 'kid': rsaKey.kid };
The access token is then created like this:
var access_token = jose.jws.JWS.sign(header.alg,
JSON.stringify(header),

JSON.stringify(payload),
privateKey);

This method generates much longer tokens. To mitigate this, token introspec-
tion is used, where the public key information of the auth server is hosted on a
known URL, so that the protected resource can fetch it when needed.

3.3.3 Validating JSON Web Tokens: 3 Examples

Here are three ways the protected resource could validate a received token from
the client. The first example is implemented with an unsigned token. The second
example with a signed symmetrical token, and the third with an signed asymmet-
rical token.

17

3 JSON Web Tokens (JWT)

Example 1: Validation of Unsigned Token

// 1. Decode Base64URL and parse JSON
var tokenParts = inToken.split('.');
var payload = JSON.parse(base64url.decode(tokenParts[1]));

// 2. Validate
if (payload.iss == 'http://localhost:9001/') {
if ((Array.isArray(payload.aud) &&
__.contains(payload.aud, 'http://localhost:9002/')) ||
payload.aud == 'http://localhost:9002/"') {
var now = Math.floor(Date.now() / 1000);
if (payload.iat <= now) {
if (payload.exp >= now) {
req.access_token = payload;

Example 2: Validation of Signed Symmetric Token

// 1. Get shared secret
var sharedTokenSecret = 'shared OAuth token secret!’';

// 2. Decode and parse token

var tokenParts = inToken.split('.');

var header = JSON.parse(base64url.decode(tokenParts[0]));
var payload = JSON.parse(base64url.decode(tokenParts[1]));

// 3. Validate

if (jose.jws.JWS.verify(inToken,
new Buffer(sharedTokenSecret).toString('hex'),
[header.algl)) {

// All previous validation from example 1 go here...

18

3 JSON Web Tokens (JWT)

Example 3: Validation of Signed Asymmetric Token

// 1. Get public key of auth server
var publicKey = jose.KEYUTIL.getKey(rsaKey);

// 2. Validate

if (jose.jws.JWS.verify(inToken,
publicKey,
[header.algl)) {

// All previous validation from example 1 go here...

3.4 OAuth 2 Token Lifecycle

There are many ways to define the lifecycle of a token. JWTs are stateless and
provide access tokens that expire, but also provide refresh tokens (that also expire
after a longer period of time), but they cannot be revoked. Other specifications
use token revocation, where the client requests for the token to be deleted and
thus closes the token lifecycle. OAuth 2 defines a token revocation protocol.

19

4 OAuth 2 Vulnerabilities

4 OAuth 2 Vulnerabilities

OAuth 2 does not guarantee security, since it does not define any implementa-
tions. Even though OAuth 2 can be seen as a solid security protocol, vulnerabili-
ties can arise when implementing it in insecure manners. This chapter is about
a few chosen vulnerabilities on each parties side.

4.1 Client Vulnerabilities

Even though an OAuth 2 client does not hold the application’s data or store any
user credentials, an authorized and trusted client is both a rewarding and a vul-
nerable target for an attacker. It carries senstivie data (authorization codes, ac-
cess tokens), and the user’s trust relationship to the client can easily be exploited,
if the client is not implemented properly.

4.1.1 Secret Theft

Whenever a client needs to manage a secret — authorization codes, access and
refresh tokens in the case of OAuth 2 — it can be stolen and misused. In this
case, it can lead to theft of information from the protected resource, or worse,
manipulation of the protected resources. This makes it a necessity to store these
secrets at a place where outside parties will not be able to access them. Secrets
also must not be written to log files.

4.1.2 CSRF Attacks

Cross-Site Request Forgery (CSRF) is when malicious applications make clients
execute undesired actions via a website for which a user is authenticated. The
malicious application tricks the user or the browser being used into sending a re-
quest to perform a task on a URI. Although the malicious application intended the
request, it was the authenticated user that made it. The malicious code is usually
embedded in HTML or JavaScript code on a website or in an email message. Upon
action of the user, the code is executed without the user knowing. A plausible list
of events would be the following:

1. The victim requests a page from the attacker’s server.

2. The attacker’s server responds with HTML containing malicious code point-
ing to a task URL on the resource owner’s server.

20

4 OAuth 2 Vulnerabilities

3. Thevictim’s browser loads the URL that sends cookies to the resource owner.
4. The resource owner authenticates the victim.

5. Loading the task URL triggers an action at the resource owner.

6. The attacker forges the authorization code of the authorization server.

7. The attacker sends a CSRF attack to the client at the client’s redirect URI (with
the authorization code).

8. The victim’s browser loads the redirect URI with the authorization code.

9. The client sends the authorization code to the authorization server.

One of the most effective ways to mitigate such an attack is to add a random
state parameter, as it is demonstrated in the case study. This parameter is passed
to the authorization server on its first request. The authentication server must
return this state parameter upon which the client can compare if it still matches.
If not, the client can terminate the process.

4.2 Protected Resource Vulnerabilities

Attacking the protected resource of an OAuth 2 deployment is the most obvious
choice, for this component offers the applications main assets: the user’s data.

4.2.1 Token Leak

If a token is leaked to an attacker via hijacking or due to weak entropy or overly
wide scopes, the resource owner could give the attacker access to protected re-
sources.

4.2.2 Cross-Site Scripting (XSS)

An attacker can trick a victim into following a forged URI containing an XSS at-
tack. This attack is quite common and is listed in the OWASP Top Ten (OWASP
Top 10 2017, 2017). The protected resource becomes vulnerable when the API
endpoints have been weakly designed or not properly implemented. Without
cleansing user inputs, for example, the attacker could add malicious code into

21

4 OAuth 2 Vulnerabilities

the query string of a URI that hits an API endpoint, and then execute the mali-
cious code upon response. In this example, JavaScript code is injected where a
language code (de, en, etc.) is expected.

http://localhost:9002/endpoint?access_token=TOKEN
&language=<script>alert('XSS')</script>

The endpoint is poorly implemented, processes the request, and the pretended
language code (i.e. the malicious JavaScript code) is executed. Tokens, which are
held in the browser session, thus can be accessed from the malicious code and be
sent to the attacker over an AJAX request.

4.3 Authorization Server Vulnerabilities

The authorization server is the most complex entity in a OAuth 2 deployment,
and therefore also has the most possible pitfalls. It both has a user-facing inter-
face (authorization/authentication page for front-channel communication) and
a machine-facing interface (API for back-channel communication). In addition
to general web security advice (use TLS, secure the server and logs, etc.), some
special advice specific to OAuth 2 is given here to avoid common vulnerabilities.

4.3.1 Session Hijacking

An authorization code, as it is used in the case study, is a one-time password, and
therefore must only be allowed to be used exactly once. Since the authorization
code is sent back to the client by the means of a redirect, this one-time password
stays in the browser history, even if the user logs out off the client and/or the
authorization server. An attacker with access to the same computer (and to the
browser history) could therefore tamper this original redirect request to get a
fresh access_token and, thus, access to the original user’s scope.

The OAuth 2 specification gives clear advice on how to prevent such attacks:
An authorization code must only be used once, and then must be invalidated by
the authorization server. Optionally, all the access tokens issued with an autho-
rization code can be revoked upon a second attempt to use it (Hardt, 2012, section
4.1.3).

22

4 OAuth 2 Vulnerabilities

4.3.2 Redirect URI Manipulation

The redirect_uri a client uses to get the authorization code sent to must be
initially registered at the authorization server. The authorization server then
must check on every request that the redirect_uri actually used matches the
redirect_uri initially registered. However, this matching can be done in differ-
ent ways:

1. Exact matching: check for equality.

2. Allowing subdirectory: the path of the actual redirect_uri can contain ad-
ditional elements to the registered value.

3. Allowing subdomain: any subdomain on the registered host can be used
with the same path.

4. Allowing both subdirectory and subdomain: a combination of the latter two
options.

Option 1, exact matching, is the safest option. The other options are unsafe
and can be exploited, especially in a cloud hosting setting. A user of service
foo.cloudhosting.com could be redirected to the attacker’s service hosted on
the same environment, say bar.cloudhosting.com, if a different subdomain is
allowed. If a different path (subdirectory) is allowed, the attacker can achieve
the same by using relative paths (../../..). If a user can be sent to such a forged
page, his authorization code will be redirected to the attacker, giving him access
to the user’s authorized scope.

23

foo.cloudhosting.com
bar.cloudhosting.com

5 Conclusion

5 Conclusion

OAuth 2 is currently the de facto standard to secure web applications. Even though
the OAuth 2 core specification does not provide a bullet-proof recipe for building
safe web applications, it is a good starting point, for there is a huge ecosystem con-
sisting of supplementary protocols, techniques, libraries, frameworks, books, ar-
ticles, best practices and ready to use components. One of the strengths of OAuth
2 is actually that is does not prescribe or define implementation details such as
cryptographic algorithms, which might be subject to change as time goes. Like
an organism that lives longer than its cells, OAuth 2 might be still around after its
current building blocks have been deprecated.

The case study shows that a simple OAuth 2 deployment can be implemented
with off-the-shelf programming tools. A good HTTP library (for both client and
server) combined with some basic crypto functionality is all it needs, even though
it is highly recommended to use higher-level abstractions or ready-made compo-
nents when implementing productive applications. (Some techniques applied in
the case study are clear security red flags, such as storing passwords in cleartext,
or communicating over plain HTTP.) Since the focus of the example code is only
on the communication flow, the case study still makes a point: A simple web ap-
plication can be sufficiently secured with OAuth 2 using simple tools, even though
it takes some effort to understand the intricacies of each and every step.

Unlike the case study, real-world applications do not use opaque random strings
as tokens, but encode the delegated access rights into a cryptographically secured
token format called JWT. This common token format not only makes it easier to
implement OAuth 2 applications (thanks to well-tested and convenient libraries),
but also helps to decouple the protected resource from the authorization server.
(In the case study, the protected resource still relied on the authorization server
to validate tokens.)

Since OAuth 2 lives in the context of the modern web, it is subject to common se-
curity vulnerabilities such as session hijacking and cross-site scripting. Common
vulnerabilities have common, time-proofed and well understood mitigations, and
the OAuth 2 specification and its related documents offer good advice on how to
harden web applications against those threats.

As the web becomes the most common way of deploying applications, more
sensitive data is moved into web applications, and as OAuth 2 stays the state of
the art standard for securing web applications, a solid understanding of OAuth 2
is a necessity for professional web developers nowadays.

24

References

References

Dijkstra, E. W. (1985). On Anthropomorphism in Science. http://www.cs.utexas
.edu/users/EWD/ewd09xx/EWD936.PDF. (circulated privately)

Hardt, D. (2012, October). The OAuth 2.0 Authorization Framework (RFC No. 6749).
RFC Editor. Internet Requests for Comments. Retrieved from http://www
.rfc-editor.org/rfc/rfc6749.txt

Jones, M., Bradley, J., & Sakimura, N. (2015, May). JSON Web Token (JWT) (RFC
No. 7519). RFC Editor. Internet Requests for Comments. Retrieved from
http://www.rfc-editor.org/rfc/rfc7519.txt

Khalid, A. (2019, March). Facebook stops asking new users for email pass-
words. https://www.engadget.com/2019/04/03/facebook-stops-asking
-new-users-for-email-passwords

OWASP Top 10 2017. (2017). https://www.owasp.org/index.php/Top_10-2017
_Top_10. Open Web Application Security Project.

Richer, J., & Sanso, A. (2017). OAuth 2 in Action. Manning.

List of Figures

1 The OAuth 2 Authorization Grantio v ... 9
List of Tables
1 Standard J[SON Web Token Claim§o v v .. 15

25

http://www.cs.utexas.edu/users/EWD/ewd09xx/EWD936.PDF
http://www.cs.utexas.edu/users/EWD/ewd09xx/EWD936.PDF
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc7519.txt
https://www.engadget.com/2019/04/03/facebook-stops-asking-new-users-for-email-passwords
https://www.engadget.com/2019/04/03/facebook-stops-asking-new-users-for-email-passwords
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10

	Introduction
	The OAuth 2 Basics
	Roles
	Access Token
	Protocol Flow

	The Dark Ages before OAuth 2
	The Attraction of OAuth 2
	The Limitations of OAuth 2

	Case Study: Gossip Server
	OAuth 2 Authorization Grant: A Conversation
	Act I: Getting a Token
	Act II: Using a Token

	JSON Web Tokens (JWT)
	OAuth 2 Tokens
	Overview of OAuth 2 Token Implementations
	Structured Tokens: JSON Web Tokens (JWT)
	Unsigned JSON Web Tokens
	Signed JSON Web Tokens
	Validating JSON Web Tokens: 3 Examples

	OAuth 2 Token Lifecycle

	OAuth 2 Vulnerabilities
	Client Vulnerabilities
	Secret Theft
	CSRF Attacks

	Protected Resource Vulnerabilities
	Token Leak
	Cross-Site Scripting (XSS)

	Authorization Server Vulnerabilities
	Session Hijacking
	Redirect URI Manipulation

	Conclusion
	References
	List of Figures
	List of Tables

