“SDX: A Software Defined Internet Exchange Point” to Appear at SIGCOMM 2014

A paper on SDX will appear at SIGCOMM 2014 in August 2014.  Read more about the SDX project here.

SDX: A Software Defined Internet Exchange

Arpit Gupta (Georgia Institute of Technology)
Laurent Vanbever (Princeton University)
Muhammad Shahbaz (Georgia Institute of Technology)
Sean P. Donovan (Georgia Institute of Technology)
Brandon Schlinker (University of Southern California)
Nick Feamster (Georgia Institute of Technology)
Jennifer Rexford (Princeton University)
Scott Shenker (UC Berkeley)
Russ Clark (Georgia Institute of Technology)
Ethan Katz-Bassett (University of Southern California)


BGP severely constrains how networks can deliver traffic over the Internet. Today’s networks can only forward traffic based on the destination IP prefix, by selecting among routes offered by their immediate neighbors. We believe Software Defined Networking (SDN) could revolutionize wide- area traffic delivery, by offering direct control over packet- processing rules that match on multiple header fields and perform a variety of actions. Internet eXchange Points (IXPs) are a compelling place to start, given their central role in interconnecting many networks and their growing importance in bringing popular content closer to end users. To realize a Software Defined IXP (an “SDX”), we must create compelling applications, such as “application-specific peering”—where two networks peer only for (say) streaming video traffic. We also need new programming abstractions that allow participating networks to create and run these applications and a runtime that both behaves correctly when interacting with BGP and ensures that applications do not interfere with each other. Finally, we must ensure that the system scales, both in rule-table size and computational overhead. In this paper, we tackle these challenges and demonstrate the flexibility and scalability of our solutions through controlled and in-the-wild experiments. Our experiments demonstrate that our SDX implementation can implement representative policies for hundreds of participants who advertise full routing tables while achieving sub-second convergence in response to configuration changes and routing updates.